On the Asymptotic Normality of the Conditional Maximum Likelihood Estimators for the Truncated Regression Model and the Tobit Model

نویسنده

  • Chunlin Wang
چکیده

In this paper, we study the asymptotic normality of the conditional maximum likelihood (ML) estimators for the truncated regression model and the Tobit model. We show that under the general setting assumed in his book, the conjectures made by Hayashi (2000) 1 about the asymptotic normality of the conditional ML estimators for both models are true, namely, a sufficient condition is the nonsingularity of xtx ′ t . AMS 2000 Mathematics Subject Classification: Primary 62F12, 62H12

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditional Maximum Likelihood Estimation of the First-Order Spatial Integer-Valued Autoregressive (SINAR(1,1)) Model

‎Recently a first-order Spatial Integer-valued Autoregressive‎ ‎SINAR(1,1) model was introduced to model spatial data that comes‎ ‎in counts citep{ghodsi2012}‎. ‎Some properties of this model‎ ‎have been established and the Yule-Walker estimator has been‎ ‎proposed for this model‎. ‎In this paper‎, ‎we introduce the...

متن کامل

Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data

Kernel density estimators are the basic tools for density estimation in non-parametric statistics.  The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in  which  the  bandwidth  is varied depending on the location of the sample points. In this paper‎, we  initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...

متن کامل

Working Paper Department of Economics ^simheteicallt Trimmki) Least Squares Estimation Foe Tobit Models

This papjer proposes alternatives to maximum likelihood estimation of the censored and truncated regression models (known to economists as "Tobit" models) . The proposed estimators are based on symmetric censoring or truncation of the upper tail of the distribution of the dependent variable. Unlike methods based on the assumption of identically distributed Gaussian errors/ the estimators are co...

متن کامل

Estimation of Censored Linear Errors-in-Variables Models∗

This paper deals with a linear errors-in-variables model where the dependent variable is censored. A two-step procedure is proposed to derive the moment estimator of the model and the corresponding asymptotic covariance matrix. The results cover the moment estimation of the usual (error-free) Tobit model as a special case. It is shown that, under normality and a certain identifying condition, t...

متن کامل

Estimation in Simple Step-Stress Model for the Marshall-Olkin Generalized Exponential Distribution under Type-I Censoring

This paper considers the simple step-stress model from the Marshall-Olkin generalized exponential distribution when there is time constraint on the duration of the experiment. The maximum likelihood equations for estimating the parameters assuming a cumulative exposure model with lifetimes as the distributed Marshall Olkin generalized exponential are derived. The likelihood equations do not lea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008